
Треугольник Паскаля — арифметический треугольник, образованный биномиальными коэффициентами и назван в честь великого французского математика Блеза Паскаля.

Этот треугольник воспроизведен на титульном листе учебника арифметики, написанном в начале XVI Петром Апианом, астрономом из Ингольтштадского университета.

Изображен такой треугольник и на иллюстрации в книге одного китайского математика, выпущенной в 1303 году. Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника около 1100 года, в свою очередь, заимствовав его из более ранних китайских или индийских источников.

Треугольник Яна Хуэя, 1303

Книга "Математические новеллы" (М., Мир, 1974) Мартина Гарднера есть высказывание: "Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В тоже время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике"
Свойства Треугольника Паскаля
Треугольник Паскаля позволяет объяснить принцип действия так называемой доски Гамильтона - механического устройства служащего для демонстрации приближенного гауссовского распределения.


Существует трехмерный аналог треугольника - пирамида Паскаля, ее связь с триномиальными коэффициентами. Пирамиду Паскаля можно строить в форме тетраэдра, а также пирамиды с различными значениями двухгранных углов, один из которых прямой.
По трем внешним ребрам пирамиды стоят единицы. Каждая из трех боковых граней представляет собой треугольник Паскаля. Любой внутренний элемент пирамиды Паскаля, стоящий в n-м сечении, равен сумме трех элементов, расположенных в углах элементарного треугольника (n-1)-го сечения пирамиды. Сечение получается из треугольника Паскаля, основанием которого служит n-я строка Паскаля, умножением элементов его строк почленно на элементы основания, повернутого против часовой стрелки на угол ПИ/2.

Схема построения треугольника, предложенная Гуго Штейнгаузом в его «Математическом калейдоскопе»: предположим, что вы входите в город как показано на схеме синей стрелкой, и можете двигаться только вперед, точнее, все время выбирая, вперед налево, или вперед направо. Узлы, в которые можно попасть только единственным образом, отмечены зелеными смайликами, точка, в которую можно попасть двумя способами, показана красным смайликом, а тремя, соответственно - розовыми. Это один из вариантов построения треугольника.